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Abstract. Phase-integral approximations of a new kind are obtained. They are closely 
related to the phase-integral approximations generated from an unspecified base function 
Q(z), due to Professor N Froman and Professor P 0 Froman. In the search for an optimal 
base function, a sequence of successively improved base functions e,&) are derived 
(N=O, 1,2,. . .) together with a concise recurrence formula for these functions that is 
suitable for computer calculations. (The function Qdz) is an approximate sdlution to the 
nonlinear q-equation, equivalent to the Schrodinger equation). The proposed approxima- 
tion, which is immediately obtained from Qdz) ,  is expected to be somewhat more 
accurate (for N a 2 )  than the corresponding phase-integral approaimation of order2N+ 1, 
obtained from the function qN(z) given by 

A detailed comparison is made between Qdz) and q&) for N=O, 1, 2, and 3. The 
proposed approximations have the correct form required to combine them with the 
F-matrix technique for solving connection problems. 

1. htroducth 

The author has previously treated one-dimensional problems concerning transmission 
(tunnelling) and bound states [I-31 by means of the well-known phase-integral 
method due to Froman and Froman and developed by them in [4-61. The  method 
combines arbitrary-order phase-integral approximations generated from an unspeci- 
fied base function, derived in [4] and [SI, with the F-matrix technique for solving 
connection problems, constructed in [6] .  The advantages of using higher-order phase- 
integral approximations instead of the related higher-order JWKB approximations, as 
documented in [7l, are connected with the fact that the expressions for the phase- 
integral functions have the same simple structure as displayed by "(2) in equation 
(2). For a short introduction to the phase-integral method the reader is referred to 
appendix A of [l], where some key facts about the method are given. A more recent 
review article [8], containing an extensive reference list, is published in a book in 
commemoration of the article Ramifkatiom, Old and New, of the Eigenvalue Problem 
by Hermann Weyl[9]. Further, in section 2 of the present paper, the main steps in the 
derivation of the phase-integral approximations are described. 

In section 3 the new alternative phase-integral approximations are obtained. These 
approximations have a simple structure making them suitable for computer calcula- 
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tions. The recurrence formulas for the functions Q&) and E,&), given by (42) and 
(43), constitute the principal result of this article. Appendix 1 and appendix 2 give 
mathematical support to the reasoning in sections 2 and 3 as well as to appendix 3 
where (for N=O, 1,2, and 3) a detailed comparison is made between the expression 
for the base function Q d z ) ,  on one hand, and the phase-integral expression of order 
2N+ 1, i.e. 

N 

on the other hand, indicating that the new approximations should be somewhat more 
accurate for Na2. However, this question must be investigated by means of 
numerical calculations on model potentials before anything definite could be said 
about this point. 

The phase-integral method has been successfully applied to various physical 
problems in the past two decades. Simple formulas admitting accurate evaluation have 
been obtained for a number of physical quantities such as energy eigenvalues, level 
densities, normalization factors, quantal expectation values, quantal matrix elements, 
dispersion relations, phase shifts, and transmission and reflection coefficients. 
Problems concerning, for instance, an unharmonic oscillator, a compressed atom, 
screened Coulomb potentials, Regge poles, scattering by complex potentials, complex 
angular momentum analysis of scattering, and black holes have been treated. For 
information, a number of pertinent papers [10]-[25] have been included in the 
reference list. By using in the phase-integral method, for N = 2 , 3 ,  . . . , the base 
function Q d z )  instead of the original phase-integral expression of order 2N+ 1, we 
expect to gain some improvements in the numerical results due to a faster 'conver- 
gence' of the successive expressions. In the first place, this improvement is expected to 
show in those successive approximate soh~tions of the Schrodinger equation which are 
obtained (for N=2,3,.  . .) if one replaces the function q(z), occurring in the 
expression (2) for the wavefunction, by the base function Q&) instead of replacing it 
by the original phase-integral expression of order 2N+1. We remark that the 
functions Qlyiz) are constructed as successively improved approximate solutions of 
the nonlinear q-equation (3) that is equivalent to the Schrodinger equation. 

2. Phase-integral approximations generated from an unspecified base function 

We begin by giving a short account of the main steps in the derivation of the Froman 
phase-integral expressions for the function q(z).  In dsing so we shall slightly change 
the notation in order to make it more suited to the treatment later in this article. 

We consider the Schrodinger equation 

dZY 
-+R(z)Y(z) =o 
d r 2  

where R(z )  is assumed to be a single-valued analytical function in some region of the 
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complex z-plane. 
Inserting in (1) 

we obtain the equation 

called the q-equation, which is equivalent to the original Schrodinger equation. The 
quantity ~(4) occurring in the theory is defined by 

From (3) and (4) we realize that ~ ( q )  EO, if q is an exact solution of the q-equation. In 
the case that we cannot find an exact solution, we shall try to find a function q(z) 
which makes E ( q )  as small as possible, i.e. a function q(z)  that is the best approximate 
solution of (3) that we are able to attain. 

Inserting in (4), 

4 2 )  = Q(z)g(Z) (5) 
where Q(z )  is called the base function (not yet specified), we can write (4) in the form 

where the variable 5 is defined by 

5= Q ( z ) ~  I' 
and where the explicit expression for E(Q)  is given by 

according to the definition (4). The relation (6) is originally derived in [l] and given 
there by (A27) in appendix A. The quantity &(e) is identical with E~ occurring in the 
phase-integral theory. Inserting (5) in the q-equation (3), we obtain an equation for 
g(z) instead, which reads 

d2 
1+E(Q)-g2+g+"2~g-'=0. (9) 

If the base function Q(z) is chosen such that E ( Q )  = 0, we realize that g(z) = 1 is an 
exact solution of (9). However, if we have succeeded in finding a base function Q(z) 
that makes E ( & )  very small (eve? though not exactly equal to zero), we expect to find 
a solution of the g-equation (9) having the form g(z) = 1 +some small function. 

We shall now assume that R ( z )  is very large. We introduce a small local parameter 
p defined by the equation IR(z)I =p-'. The function R(z)  at the point z ;and in the 
neighbourhood of z is thus of the order of magnitude of p -'. Being a local parameter, 
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p is different in different regions of the complex z-plane. We shall visibly display the 
largeness of R(z) ,  expressed in terms of the parameterp, by writing R(z)  .A-'. where 
A is a new parameter having the numerical value A = 1. The symbol A is intended to 
appear merely as a sign giving information about the term to which it is multiplied. 
One can delete A at any moment, thereby destroying a certain information about the 
term to which it is multiplied, but nothing else would be changed. Instead of deleting 
A, one can achieve the same result by putting d equal to unity. 

We require that the base function Q(z )  shall be chosen such that the expressions 

give correct information about the largeness of the terms Q'(z) and [R(z)-Q2(z)], 
respectively. The information implied by (loa) is that the quantities Q2(z) and 
[R(z)  - Qz(z)] are of the order of magnitude of p - 2  and p o ,  respectively. It is also 
assumed in phase-integral theory that &(e), given by (8), can correctly be written 

That this is a new assumption which does not follow from (loa) is usually not 
mentioned in phase-integral literature. 

Q'(z).A-' and - Q'(z)I.A' ( l o a )  

&(Q).A', (lob) 

Since 
dg dzdg 1 dg 
dc dcdz Q d z  
_=__=-- 

we find that we can take the largeness of the different terms in (9) into account by 
writing the equation in the following form 

d2 
1 + & ( Q ) . A z - g z + g + ' " ~ g - ~ ~ A 2 = 0 .  d5 (12) 

g(z)=Z Y"(Z).A" (13) 

Inserting in (12) the formal expansion 
CO 

"=a 
and ordering the terms according to the powers of A, we obtain a certain coefficient 
expression for each A" (n=O, 1, 2, . . .) which we set equal to zero. In this way we 
successively obtain 

Y&) = 1 (14a) 
1 

2 Y2(.7)=-&o 

etc. 
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The expressions (14a-e) are quoted from equations (6a-e) in [26]; for simplicity we 
have kept the symbol E, that stands for E ( Q ) .  Equations (14u-c) were originally 
obtained by N. Froman [27] together with the recurrence formula 

c, Y z J v -  ybyvy,Yzd 
a+#=“ o*#+y+d=n 

Explicit expressions for Yz. up to Ym have been calculated by Campbell [28], who 
used a symbolic (algebraic) computation system. By cutting off the expansion (13) at 
N ,  with Yu, given by (14a-e) and (15), we obtain 

N 

g(z )=c ,  YZdz) (16) 
n=O 

which is an approximate solution of the g-equation (9). From (5)  and (16) we realize 
that the function 

N 

~ q(z)=Qk) 2 Yz.(z) (17) 
“4 

is an approximate solution of the q-equation (3), and further that (2) will be 
transformed into two approximate solutions of the original Schrodinger equation if 
the function q(z) occurring in (2)  is replaced by the expression in (17). These 
functions, obtained by (2) and (17), are called phase-integral functions of order 2N+ 1 
generated from the unspecified base function e@). By forming linear combinations of 
the two phase-integral functions, we obtain the corresponding phase-integral approxi- 
mation of order 2N+ 1 .  

The expression for q(z) given by (17) will, in the present paper, be called the 
phase-integral expression of order 2N+ 1 generated from the base function Q(z). The 
th i rdader  phase-integral expression for q(z)  is 

q(z)= Q ( Z )  ( 1  +:Eo) (18) 

as we see from (17) and (14a, b). 

3. The base functions Q&) 

The main idea of the present article is to use the function in (18) as a new base 
function Q,(z) replacing the original base function Q(z), which from now on will be 
called e&). The variable 5 that corresponds to Q, and is defined by (7) d l  now be 
called go. The function Q, will be regarded as the first one in a sequence of base 
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functions QN(z), where N=O, 1,2,  3, . . . Each base function QN can be used as a 
starting point for obtaining a kind of phase-integral expression of order 2M+ 1 (for 
M=O, 1,2, . . .) generated from QN. But Q N  can alternatively be used in a direct way 

' to obtaining approximate solutions of the Schrodinger equation (l), simply by putting 
q(z) = QN in formula (2). This can later be realized from the fact that the functions 
Q N ,  for N=O, 1, 2, . . . , are constructed as successively improved approximate 
solutions of the q-equation (3). When used in the latter direct way it becomes 
interesting to compare the base function QN with the corresponding phase-integral 

I expression 
N 

It will be argued that, for N32 ,  the approximate solutions of the Schrodinger 
equation, obtained by using Q N ,  will probably be somewhat more accurate than those 
obtained by using the corresponding phase-integral expression. We will come back to 
this point later, particularly in appendix 3. 

The new alternative phase-integral approximation, proposed in the present paper, 
is obtained by forming linear combinations of the two functions in (2), with q(z)  
replaced by a d z ) ,  where Nis any integera0. 

As mentioned above, we take 

as our new base function. Using the definition 
1 

ga= 1 + 5 &(ea) (20) 

we can write Q,= &go. Let us in the main repeat the procedure followed in section 2, 
but now with Q, as base function (instead of Qa). Putting 

in (3), we obtain the new g-equation 
q=Qi.g (21) 

where now 

and 

Proceeding formally in a similar way as before, we can write (22) in the following 
form, displaying the largeness of each term: 

dz 
d5: 1 + z(Q1) .A4-gZ +g'" - -m.Az= 0 (25) 
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In order to obtain (25) we have used the fact that Q, can correctly be written Q, 
which follows from (19) and (loa, 6) .  We have also used that 

d d z d  I d  
d5i d5idz Qidz (26) _=__=__ 

which follows from (23), and further that &(el) is a quantity which correctly can be 
written &(Ql).L4, according to (A1.10) in appendix 1. 

Inserting in (25) a series expansion for g(z) ,  
m 

g(2 )  = Y g ( z )  . P 
,l=O 

ordering the terms according to the powers of A and putting the coefficient expression 
for 2% equal to zero (for n=O, 1, 2, . . .), we successively obtain in this case 
(disregarding the possibility Yg'= -1) 

1 y p  = 1 

yp = 0 (286) 

Y P ) =  &(el) ( 2 8 ~ )  
1 

etc. 
The superscript (1) in the symbol Ye indicates that the expansion coefficient Yg)(z) is 
related to the base function Q&). We note that the function Yg in (2Sa-e) indeed 
differs from Yh in (14a-e), for n#O, and that Yg) given by (28) is not obtained from 
Y,,, in (14) simply by exchanging and I; for &(el) and cl, respectively. By cutting off 
the series expansion in (27) at N, we obtain 

N 

g(z)  = Y E ( Z ) .  (29) 
n=0 

From (21) and (29) we obtain in this case 
N 

q ( z ) = Q i C  W ( z )  
"=O 

which is a kind of phase-integral expression of order 2N+ 1 generated from the base 
function Q,(z), but which differs from the ordinary phdse-integral expression of order 
2N+ 1 generated from the base function e&). From (21), (22), and (29) we realize 
that the expression (30) is an approximate solution of the nonlinear q-equation (3). As 
before, we shall choose the first two non-zero terms in the expression (30) for q(z) as 
our next base function Qz(z). Thus we set 
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It is now easy to understand how to proceed, going through one more cycle of similar 
reasoning, resulting in the next base function Q3 defined by Q,=Q,(l++&(Q2)).  
Having followed the first steps in detail leading to Q ,  and Q2, we shall next go on to 
consider the general case and follow the steps leading from the base function QN to the 
base function QN+, . 

Inserting in (3), 

d-7 1 = Qdz) . d z )  (32) 
we obtain the pertaining g-equation 

where 

and 

Since, according to (A2.7) in appendix 2, the expressions E ( Q ~ ) - ~ ~ + ~  and Q$A-' 
correctly display the largeness of &(a,) and Q;,  respectively, we can write the 
equation (33) in the following form 

d2 
1 + E(QN) .dZN+2-g2+g+ ' *~g-m.A2=0.  (36) d5N 

Inserting in (36) the formal expansion 
E 

g(z) =E YP(2) 
"=O 

(37) 

and putting the coefficient expression for each Ah equal to zero, for n=O, 1,2,  . . . , 
we successively obtain (disregarding the case Y&*= -1) 

Yp=I 
YP=O forn=l ,2 ,  ..., N 

1 
W+Z=ZE(QN) for n = N +  1. (38c) 

The functions Y T ,  for n > N +  1, have not yet been calculated. The superscript ( N )  in 
the symbol Y g + 2  signals that the symbol is related to the base function Q,. 

Cutting off the expansion (37) at n = M ,  we obtain. 
M 

g(2) = YP(2)  .Ah, (39) 
Il=0 

From (32) and (39), recalling (38), we obtain 
M 

q ( ~ )  = QN E Y ~ ' ( z )  . dh 
*=O 
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which is a kind of phase-integral expression of order 2M + 1 generated from the base 
function QN. From (32), (33), and (39) we realize that the expression (40) is an 
approximate solution of the nonlinear q-equation (3). We should observe that (40) is 
not equal to the ordinary phase-integral expression of order 2M+ 1 generated from 
the base function Q,. However, if q(z) given by (40) is inserted in formula (2) one 
obtains a kind of phase-integral functions of order 2 M + 1 .  And by forming linear 
combinations of the latter two functions one obtains a kind of phase-integral 
approximation of order 2M+ 1, generated from the base function Q,. 

According to the main idea in this article, we choose for our next base function 
Q,,, the expression obtained from (40) by cutting off the series expansion at 
M =  N +  1, thus keeping only the first two non-zero terms. We obtain 

,+I QN+l=QNz Y p ( z ) = Q N  
" = O  

Summarizing, the sequence of base functions Q d z )  ( N =  0, 1,2,3,  . . .) constructed in 
this way is given by,the recurrence formula 

1 
Q N + ~ ( ~ ) = Q N ( z )  (1 + z E ( Q N ) )  (42) 

together with the following formula for &(e,,) 

which are valid for N=O, 1, 2, . . . . We note that the quantities Qo(z) and E ( Q ~ )  
occurring above should be identified with Q(z )  and to, respectively, pertaining to the 
Froman phase-integral approximations. It is assumed that Qo(z)  is chosen such that 
the largeness of E ( Q ~ )  is correctly dis layed by the expression &(eo) .A2. Sometimes it 

last term in (43) by using the identity (A1.5) of appendix 1 with q(z )  replaced by 
e,&). From (42) we get, by iteration 

is satisfactory to choose Qo = 4 R ( z )  For calculation, it is convenient to revfflte the 

Using the definition 

(45) 
1 

g. = 1 +? 4Q.) 

(44) can simply be written 
N 

Q N + ~ =  eo g.. (46) 
n=0 

From the preceding text, in particular the section between (40) and (41) including 
these formulas, it is clear that Q N ( z )  by construction is an approximate solutian of the 
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q-equation (3). The base. function QN is to be compared with the phase-integral 
expression of order 2N+ 1, i.e. 

N 

“ = O  

in which the functions Y&) are given by (14) and (15). 
For certain model potentials and for certain physical quantities of interest, values 

calculated by means of phase-integral formulas (of arbitrary order) have been 
compared with purely numerically calculated values. It would be interesting to study 
the accuracy obtained by using the base function QN instead of the phase-integral 
expression of order 2N+ 1. In Appendix 3, a detailed comparison is made between 
the analytical expressions for 

N 

and QoX Yzn(z) 
“=a 

Qdz) 

respectively, which seems to indicate that one can expect to gain some improvement 
of the accuracy by using the base function QN instead of the corresponding Froman 
phase-integral expression of order 2N+ 1. 

Appendix 1. &(Qd expressed in terms of dQ,,) 

We want to express &(el) in terms of &(eo) and derivatives of &(eo) with respect to the 
variable Co. From (19) and (20) we get 

&(Qi) = ~ Q O S O )  (Al.1) 
where 

From (6) and (7), replacing Q, g, and (by Q,, go, and go, respectively, we obtain the 
relation 

(A1.3) 

where 

CO= Qodz. (A1.4) 

Let us transform the last term in (A1.3). The identity (A20a) in [l] reads, for n = 1, 
I’ 

Replacing q by go, and z by CO, we obtain from (A1.5) the identity 

(A1.5) 

(A1.6) 
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Inserting (A1.6) into (A1.3), using also (AM), we get from ( A M )  and (A1.3) the 
~ formula 
! 

(A1.7) 

By means of the parameter d, one can display the order of magnitude of the different 
terms in (A1.7). According to (loa, b), it is correct to write the functions Q, and &(Q0) 
as Qo.d-' and &(Q0).d2, respectively, and consequently also correct to write 

----------.dP, ~ ( Q o )  dz %Qo) 1 ddQo) 1 d&?o) 
(A1.8) - - - 

d5o dco dz Qo dz Qo 

Hence, we realize that (A1.7) can be written in the following way 

Considered as a whole, E ( Q ~  is thus a L4-quantity which can be exhibited b,y writing 
4QJ as 

4Qi) .a4 (Al. 10) 

From (19) and the lines immediately above (AM), it follows that the largeness of Q, 
is correctly displayed by the expression 

Ql.d-'. (Al.11) 

~ From (31), (ALlO), and (ALll), we conclude in a similar wzy that the largeness of 
Q, is correctly displayed by the expression Q,.X'. 

Appendix 2. E(QN+l) expressed in terms of @eN) 
We shall now generake the results in appendix 1. Let QN+l(z) and &(QN) be defined 
by (42) and (43) for N=O,  1,2, . . . , and let us assume that Qo(z) is chosen such that 
the largeness of &(eo). and of Qo(z) itself, are correctly displayed by the expressions 
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respectively. The assumption (A2.1) originates from (10n,b). From (6) and (7), 
putting Q=QNandg=gN,  weobtain 

where 

C N =  Q N ~ .  I' 
Using (42) and (45), formula (A2.2) can be written 

(A2.2) 

(A2.3) 

Let us rewrite the last term in (A2.4). Putting q =gN and L = cN in the identity (A1.5), 
we obtain the identity 

(A2.5) 

From (A2.4), inserting the expression given by (A2.5), and using again that g N =  

1+5&(QN), we obtain 
1 

We shall now prove by means of complete mathematical induction that the expres- 
sions 

E(QN) .Am2"' and QN.A-', (A2.7) 
for all N a O ,  in a correct way display the largeness of the quantities &(eN) and QN, 
respectively, expressed in terms of powers of the small parameterp. Therefore, let us 
first assume that (A2.7), for some N, actually displays the correct expressions for 
&(eN) and QN. Observing that (cf. (A2.3)) 

we realize that (A2.6) can be written in the following yay 

Since Am'4 is the lowest power of A that occurs in (A2..9), we conclude that &(eN+,), 
considered as a whole, is aAmZNf4-quantity. From (42) and (A2.7) it follows that QN+, is 
a A-'-quantity. We have thus proved that the expressions 

4 Q ~ + i )  .AzN+4 and ~ ~ -Q N + l  -A-' (A2.10) 

--I_ 
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correctly display the largeness of &(QN+J and QN+l, respectively, on the assumption 
that (A2.7) correctly displays the largeness of &(eN) and Q,, respectively. Noting next 
that (A2.7) is in fact correct for N=O, since the expressions given by (A2.1) correctly 
display the largeness of &(eo) and Q,, we finally conclude that the assertion (A2.7), 
for N>O, has been proved by complete induction. In addition, we conclnde that 
(A2.9) gives a correct expression for E ( Q ~ + ~ ) ,  for N 3 O .  

' N  

Appendix 3. The base function QN compared with Qo U&) 
*=0 

We shall denote the phase-integral expression of order 2N+ 1 generated from the 
unspecified base function Qo(z) by the short symbol qN. Thus we write 

N 

(A3.1) 

remembering that the &factor can always be eliminated by putting 1 = 1 (cf (17), (5) 
and (13)). The reader is reminded that the base function Q(z) and the function ~ ~ ( 2 )  

occurring in the Froman phase-integral approximations should be identified with 
Qo(z) and &(Q0), respectively, in the present article. 

We shall compare the base function QN with qN.  i.e. the phase-integral expression 
of order 2N+ 1. For N=O and 1, this is very easy, because Qo is simply equal to qo, 
and from (19) together with (A3.1) and (14a, b), we see that Ql=ql.  That is, we 
obtain 

Qo = qo (A3'.2a) 

1 e, = q1 = eo (1 +,&(no)) . (A3.26) 

For N 3 2  the comparison becomes more difficult. From (45) and (a), we obtain 

Q2=Qogogi=Qo +?&E(Q&o (A3.3) 

and from (A3.1) and (14a-c) 

(A3.4) 

1. Comparison for N = 2  
In order to compare the expressions for Q, and q2 given by (A3.3) and (A3.4), we 
should express c(Ql)go, occurring in (A3.3), in terms of &(Qo) and derivatives of &(eo) 
with respect to Co. To simplify the expressions in appendix 3, we shall in the following 
write to instead of &(eo). 
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From (A1.7) we immediately obtain 

. where, quoting (A1.2) 

1 
2 go = 1 + - E o .  

(A3.5) 

(A3.6) 

We shall also display the largeness of the different terms by means of the parameter A. 
From (A2.1) and (AM) it follows that the expressions 

correctiy display the largeness of the quantities 

d&o d2E0 - - 
dCo dG ' 60 

respectively, why (A3.5) correctly can be written in the following way 

and (A3.6) as 

1 
2 go= 1 + - E o  .AZ. 

Expanding l/go in the series 

(A3.8) 

(A3.9) 

and expanding also l /gi  and l/g: in a similar way, inserting the expansions in (A3.7), 
and arranging the terms according to the powers of 1, we arrive at the following 
expression for +&(Ql).g0: 

Writing (A3.4) in the following form (cf also (A3.1)) 

(A3.10) 

(A3.11) 
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it is now possible to compare q,, given by (A3.11), with Q, given by the expression 
below, obtained by inserting (A3.10) in (A3.3) 

(A3.12) 

First of all, we tind that the expression for Q2 includes q,, i.e. the fifth-order 
phase-integral expression. The expressions for Q, and q, are identical as concerns the 
,I%-terms for n=O, 1, and 2. But the expression for Q, contains, in addition, 
higher-order terms. Do these ,I%-terms, for n>2, improve the accuracy of the 
approximate solution of the Schrodmger equation that is obtained from (2) by 
exchanging q(z) for Qz(z)? Do these terms appear in the higher-order phase-integral 
expressions, i.e. in q3, q4, . . . and so forth? Maybe it is the case that the 
,Ih-contribution to Q2, for n>2 ,  is part of the 2”-contribution to the higher-order 
phase-integral expressions q3, q4, . . . etc.? We shall try to answer these qusestions to 
some extent by comparing the ,I”’-contribution to Q,, given by (A3.12), with the 
corresponding ,I%-contribution to q3,  q4, . . . etc. We shall limit our task to the ,I6- and 
,Is-contributions only, since the difficulty strongly increases with increasing n. We see 
from (A3.1) that Y6 is the ,16-contribution, not only to the phase-integral expression q3 
but in fact to every phase-integral expression qN, for N23,  and generally that Y,, is 
the AZ”-contribution to every phase-integral expression qN, for Nan.  

Let us first compare the ,16-terms in the expression for Q,, given by (A3.12), with 
the ,16-terms in the phase-integral expression q3, which are given by Y6 (as mentioned 
above). Quoting (14d), we have 

(A3.13) 

We find that the ,16-terms in (A3.12) reproduce a good part of the first three: tenus in 
(A3.13). But there is no A6-term in (A3.12) that corresponds to the fourth term in 
(A3.13). Summarizing the results, so far, we have found that the expression for Q, 
includes the fifth-order phase-integral expression q2, but also that it includes a good 
part of those terms which constitute the difference between q, and the next higher- 
order phase-integral expression, that is q3. 

Let us go on to compare the three ,I8-terms in the expression for Q,, given by 
(A3.12), with the A’-terms occurring in the succeeding phase-integral expression q4, 
which are given by (quoting (14e)) 

1 dzeo 
Ys=-- 5 t ~ + 5 0 t 0  - +30~~7+fouraddi t ional terms . 

128 [ (::r d5o (A3.14) 

It should be observed that the terms of Ys form the ,I’-contribution to every 
higher-order phase-integral expression qn, for n 3 4 .  We observe that 1:he three 
,I’-terms occurring in (A3.12) have the same sign as the corresponding terms in 
(A3.14), and that they reproduce a good part of the latter terms. One could in 
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principle go on to compare, also for n>4, thed2”-terms occurring in (A3.12) with the 
corresponding terms appearing in the expression for Y, in order to see how much of 
the expression for Yu, that is covered by the a%-terms already in the expression 
(A3.12) for Q,. We shall refrain from doing so, but still want to remark that it seems 
probable that the dk-terms in (A3.12) will continue to cover at least some small part of 
Yu, also in the following, i.e. for n>4. 
2. Comparison for N = 3  
We shall now proceed to compare the next base function Q, with q,, i.e. the 
seventh-order phase-integral expression for q(z) ,  according to (A3.1) and the sur- 
rounding text. From (45) and (46), we obtain 

(A3.15) Q,=Qogog~gz=Qo gagi+24Q2).gogi =Q,+Q0.,4Qz).gogi. 

For Q, appearing in (A3.15) we have the suitable expression (A3.12). Let us also 
express the function &(Q2)ggI, occurring in the second term of (A3.15), in terms of 
and derivatives of .cO with respect to ca. Formula (A2.9) yields for N =  1 

1 
) 

1 

( 

(A3.16) 

from which we immediately obtain 

With a view to using the suitable expression for e&(QI)g0, given by (A3.10), we shall 
first rewrite (A3.17), expressing &e(Q2)gOgl as a function of *&(Ql)go and derivatives 
of the same quantity with respect to go. Putting, to this end, 

and using that 

(A3.18) 

(A3.19) 

which follows from (34), (42)  an^ ;45), we find after some calculations that the first 
term in the expression (A3.17) for i-E(Q2)gOgl can be written as 

the second term as 

and, finally, the third term as 

(A3.20a) 

(A3.206) 
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Inserting (A3.20~-c) in (A3.17), expanding go and g, in formal series in the parameter 
1, similarly as done in (A3.9), and then using the expression for G given by (A3.18) 
together with (A3.10), we can arrange all terms in (A3.17) according to their powers 
of 1. We see from (A3.20~-c) tliat the terms with the lowest power of I that occur in 
(A3.17) are the L6-terms. This is to be expected, since we know from (A2.7) and (45) 
that, considered as a whole, e(QJ is a 16-quantity while go and gl are both 
L0-quantities. Let us limit our interest to the 16- andd8-terms of (A3.17). The L6-terms 
are found exclusively in the last term of (A3.20c), and with the help af (A3.18) 
combined with (A3.10), we find that the L6-contribution to the quantity 5 e(Qz)gogl, as 
given by (A3.17), is 

(A3.21) 

The L8-terms occurring in (A3.17) originate from (A3.20~) and from all the terms in 
(A312Oc) except for  the^ second one. The L8-contribution to (A3.17), c:alculated 
similarly as the A6-contribution, is given by 

According to (A3;15), we obtain Q3 by adding the expression for Qz, given by 
(A3.12), to the expression for QO~e(Q2)gOgl, which is given by (A3.17) together with 
(A3.20~-c). Restricting ourselves to L”’-term~for OSns4,  and using (A3.21) and 
(A3.22) for the A6- and d8-wntributions to (A3.17), we get the following eqression 
for Q,: -. 

dzeo -’[ 128 .(:r db; 5~:+50~O - +30~:-+13 

(A3.23) 

suitable for comparison with q3,  i.e. the seventh-order phase-integral expression for 
q(z). In (A3.23), Q3 is thus given as a formal series’expansion in the parameter 1’. 
From (A3.1) and (14a-d), we obtain 

q3= Qo(YO.do+ YZ.1’+ Y4.A4+ Ys.L6) 

(A3.24) 

Comparing (A3.3) with (A3.24) we find thatthe expression~for the base function Q, 
includes q3, the seventh-order phase-integral expression for q(r). But in addition, *e 
expression for Q3 contains Ah-terms also for n>3.  Are these terms part of q,,, q5, q6, 
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Inserting (A3.20~-c) in (A3.17), expanding go and g, in formal series in the parameter 
A, similarly as done in (A3.9), and then using the expression for G given by (A3.18) 
together with (A3.10), we can arrange all terms in (A3.17) according to their powers 
of A. We see from (A3.20~-c) that the terms with the lowest power of A that occur in 
(A3.17) are the A6-terms. This is to be expected, since we know from (A2.7) and (45) 
that, considered as a whole, &(ez) is a L6-quantity while go and g, are both 
AD-quantities. Let us limit our interest to the A6- and Ls-terms of (A3.17). Th,e L6-terms 
are found exclusively in the last term of (A3.20c), and with the help of (A3.18) 
combined with (A3.10), we find that theA6-contribution to the quantity p E(Qz)gDgl, as 
given by (A3.17), is 

(A3.21) 

The As-terms occurring in (A3.17) orifiate from (A3.20a) and from all the terms in 
(A3.20~) except for the second one. The As-contribution to (A3.17), rAculated 
similarly as the A6-wntribution, is given by 

According to (A3.15), we obtain Q3 by adding the expression for Q,, given by 
(A3.12), to the expression for Qo~c(Qz)gagl, which is given by (A3.17) together with 
(A3.2Oa-c). Restricting ourselves to L%-terms for O s n s 4 ,  and using (A3.21) and 
(A3.22) for the A6- and AS-contributions to (A3.17), we get the following expression 
for Q3: 

(A3.23) 

suitable for comparison with q3,  i.e. the seventh-order phase-integral expression for 
q(z) .  In (A3.23), Q3 is thus given as a formal series expansion in the parameter Az. 
From (A3.1) and (14a-d), we obtain 

43 = (Yo .Ao + Y2 .Az 'r Y4' A4 + Y6 .A6) 

(A3.24) 

Comparing (A3.23) with (A3.24) we find that the expression for the base function Q3 
includes q3, the seventh-order phase-integral expression for q(r). But in addition, the 
expression for Q3 contains A%-terms also for n >3. Are these terms part of q4, qs , q6, 
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. . . , i.e. the higher-order phase-integral expressions? To be concrete, let us consider 
q6 given by (A3.1) and (14a-e): 

(A3.25) q4= Q~(Y~.A~+ y2.n2+ y4.n4+ y6.a6 + yS.a8) 
where 

(A3.26) 

Comparison between the As-contribution to q4 that is given by the expression for Ys in 
(A3.26), on one hand, and the d8-contribution to Q3, which can be found in (A3.23), 
on the other hand, shows that the first three terms of the two expressions are 
completely identical, while the succeeding three terms in the expression for Ys are 
mainly covered by the remaining three A*-terms in (A3.23). But to the last term in 
(A3.26), i.e. 

1 d%o 
128 dgg .As’ 

there is no corresponding As-term in (A3.23). In the region around a fist-order pole or 
an arbitrary-order zero of Q;, the term 

128 d58 
1 d%o 

’ is the dominant term in the expression for Ya, at least for the choice Q*(z)=R(z),  
according to the analysis given in [29,30]. But on the other hand, in this region the 
phase-integral approximations cease to be good. 

Summarizing, the expression for the base function Q, includes not only q3, i.e. the 
seventh-order phase integral expression, but also a good part of those terms which 
form the difference between q3 and q4, i.e. the ninth-order phase-integral expression. 
As concerns the rest of the terms in the expression (A3.23) for Q,, we expect that the 
A2”-contribution to Q,, occurring in the infinite series given by (A3.23), will continue, 
also for n>4, to cover at least some small part of the expression for Y,, i.e. the 
P-contribution to qn . We note that Y, is in fact the I?”-part of every phase-integral 
expression qN, for N a n .  
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